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FOREWORD

This technical report is a product of basic research performed ‘
under the In-house Laboratory Independent Research (ILIR) program. The !
ILIR program provides to R&D centers and laboratories the financial -
means to support, in addition to the regularly assigned program, work
judged to be important or promising, provided it contributes toward the .~
solution of a problem that is included within the mission assigned to |
the laboratory. This research contributes toward development of ngw'
methods for analysis of decision-making behavior, which is a majox
topic of interest in the Personnel and Manpower Technical Area. -
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chnical Director
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AN ALGORITHM FCR COMPUTERIZED ADAPTIVE DECISION ANALYSIS

BRIEF

Requirement:

To develop new methods for analysis of decision-making behavior--
specifically, new methods for (1) modeling a decision process used to
evaluate preferences for complex choice alternatives, and (2) producing
measurement scales for choice component factors and composite choice
alternatives based on the decision model.

.
s
.

Procedure:

Recent results in conjoint measurement theory research were applied
to develop an algorithm for minimizing the problems of redundancy and
random error in testing the additive-independence model in pair-comparisons
designs with fallible data. No provisions were made for handling the
systematic error problem or for accommodating more than two choice com- 3
ponent factors. :

Findings:

r The algorithm was tested in error-free data and in data with random
error. A reduction of approximately 44% in the number of pair-comparisons
necessary to determine all model constraints was obtained in a 5 x 5 fac-
torial design with error-free data. This reduction was decreased to 33%
when a moderate amount of random error was introduced. Various deficien-
cies in algorithm performance were noted. In general, the results showed
that this algorithm performed rather poorly.

Utilization of Findings:

P
~ This research demonstrates some limitations of a direct application
f; of the generalized cancellation condition for testing the additive-

£ independence model. Further research is required to develop an analyti-
b cal approach which can ameliorate these limitations.
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AN ALGORITHM FOR COMPUTERIZED ADAPTIVE DECISION ANALYSIS

INTRODUCTION

General Statement of the Problem

In Army research it is often desirable to investigate the nature of
a decision process used by Army personnel in making some important choice.
In many instances the choice alternatives may represent composites of
several component factors which may be identified and considered sepa-
rately. For example, in Army career planning research it may be of in-
terest to investigate the nature of the decision process used by officers
in indicating their preferences for various assignments. In this ex-
ample the choice alternatives may .be described as composites of component
factors such as assignment location (e.g., EUROPE, CONUS), type (e.g.,
COMMAND, STAFF), and duty specialty (i.e., PRIMARY, ALTERNATE).

The additive-independence model (AIM) is one particu ar model of the
decision process which has considerable appeal because of its simplicity
in comparison with other possible models and because of its general ap-
plicability in other substantive areas of psychology. In this model
component factor levels are assigned specific scale values relative to
one another. The scale values assigned to levels of a component factor
are designated independently for each component factor. The scale value
attached to a particular composite choice alternative is determined by
summing the scale values assigned to levels of the component factors
which are present in the composite. The relative maguitude of scale
values for composite choice alternatives serves as a basis for the pref-
erence decision.

For example, EUROPE 4 1 and CONUS 2 may be the scale values as-
signed to assignment location; COMMAND 2 and STAFF = 3 mav be the scale
valuwes assigned to assignment type; and PRIMARY = 5 and ALTERNATE = 1 may
be the scale values assigned to assignment duty specialty. If an indi-
vidual uses the AIM in evaluating preferences for various assignments,
the scale value attached to a PRIMARY specialty COMMAND assignment in
EUROPE is 5 + 2 + 1 = 8; the scale value attached to a PRIMARY specialty
STAFF assignment in CONUS is 5 + 3 + 2 = 10. Since the composite scale
value for the latter choice alternative exceeds the composite scale value
for the former choice alternative, the individual would indicate a pref-
erence for the latter choice alternative. If composite scale values for
the choice alternatives are equal, an individual may indicate no
preference.

]

In research on the nature of a decision process two specific objec-
tives may be identified. The first objective is to dcvelop a model of
the decision process used to evaluate preferences for complex choice
alternatives. If individual differences in the decision process are
discovered, an individual-specific model of the decisicn process -may be
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required. The second objective is to produce measurement scales for
choice component factors and composite choice alternatives based on the
decision model. The general purpose of this study was to investigate

an application of recent results in conjoint measurement theory research
with the aim of developing a new methodology for accomplishing these two
research objectives.

Specific Statement ~f the Problem

The conjoint measurement problem is that of obtaining measurement
scales for component stimuli and composite stimuli simultaneously based
on a specified composition model when only the rank order of the com-
posite stimulus effects is known. The order constraints generate a
finite system of homogeneous equations and inequalities in the composi-
tion model. 1If the specified composition model is valid, the resulting
system should be consistent and measurement scales for component stimuli
and composite stimuli may be derived by solving the system for the un-
known parameters. In the case of the AIM, the derived measurement scales
constitute "multidimensional ordered-metric scales" (Krantz, Luce, Suppes,
and Tversky, 1971, Chapter 9).

Although conjoint measurement theory has been particularly well-
developed for the additive-independence composition mcdel, practical ap-
plications with individual subjects have been few. Three formidable
problems remain to be solved for applications of conjoint measurement
theory in fallible ordinal data. First, the magnitude of the pair-
comparison task may exceed the capability of the individual subject when
the number of composite stimuli is large. If the composite stimulus set
contains N elements, N(N-1)/2 nontrivial pair-comparisons must be made
to provide a complete ordering of the composite stimuli. Since the num-
ber of pair-comparisons usually greatly exceeds the number of parameters
to be estimated for the composition model, it is clear that a large amount
of redundancy of effort is inherent in the complete pair-comparisons
method. Second, the presence of random experimental error may introduce
ordinal inversions in the ordering of composite stimuli. The result is
an inconsistent system of equations and inequalities which provides only
an approximation of the latent measurement structure. Third, the possi-
ble presence of systematic error may be difficult to detect in the pres-
ence of random error. Systematic error may result when the latent compo-
sition model differs from the additive model.

The specific purpose of this study was to develop an algorithm for
interactive conjoint measurement (ICM) to minimize the problems of re-
dundancy and random error for applications of additive conjoint measure-
ment theory in fallible ordinal data. Although the algorithm presently
has no provision for handling the systematic error problem and is limited
to two component factors, extensions of the algorithm to test several
models simultaneously with multifactor composite stimuli may be possible.
In the next section the conjoint measurement-theoretical basis for the
algorithm is presented. The notion of a constraints matrix is defined
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and an ICM algorithm is described. An evaluation of the performance of
the algorithm is provided in the last section.

INTERACTIVE CONJOINT MEASUREMENT

Measurement-Theoretical Basis

Let us represent component stimulus variables A and P as the finite
sets {a,b,c,...} and {p,q,r,...}, respectively, where the elements of a
set are the particular component stimuli included in an experiment. Each
composite stimulus may be represented as an element in the Cartesian
product set A x P. For example, composite stimulus (a,p) represents the
combination of stimulus component a in A with stimulus component p in P.
Suppose all possible pairs of composite stimuli are presented to a sub-
ject whose task is to indicate the preferred composite stimulus in each
pair. The experiment gives rise to a binary preference relation (de-
noted R) on A x P. The two sets of component stimuli A and P together
with the binary relation i defined on A x P constitute an empirical re-
lational structure (denoted <A, P,%D).

The empirical relational structure <A, P,i)-may be said to satisfy
the additive-independence model (AIM) if there exist real-valued com-
ponent stimulus-scale functions ¢, on A and ¢p on P such that the addi-
tive combination of the component stimulus-scale values preserves at
least the rank ordering of the composite stimuli for all a, b in A and
for all p, q in P:

(1) (a,p) R (b,q) iff 95 (a) + ¢p(p) 2 0, (B) + ¢p(q).

The symbol "iff" is an abbreviation for "if and only if." Component
stimulus-scale functions ¢p and ¢p map elements in sets A and P, re-
spectively, into the set of real numbers (denoted Re). When such homo-
morphisms exist, the empirical relational structure €A, P, R> is said

to be mapped into the numerical relational structure <§e, Re, §> in the
sense that ¢p maps A into Re, ¢p maps P into Re, and X is mapped into z
defined appropriately on Re x Re. 1In practice, the functions ¢p and

¢p may be constructed by solving the fin%te system of homogeneous linear
equations and inequalities generated by A on A x P.

In order for solutions ¢ and ¢p to exist, Scott (1964) proved that
the following conditions were necessary and sufficient:

Connectedness. Either (a,p) R, (b,q) or (b,q) R (a,p) for all a,b
in A and for all p, q, in P.

Cancellation. For all sequences ag, ale +--s an in A, for all
sequences pg: Pys +»-¢ Pp in P, and for all permutations = and>o of
{0, 1, ..., n}, wheren > 0, if for i =1, 2, ..., n (aj, Pi) ~
(@ (5) Pgqsy) v Then @ o) +Pg(g)) * (Bgr Py)-




The connectedness axiom simply requires that all composite stimuli
must be comparable. Although the connectedness axiom may be assumed to
hold trivially in many experimental applications, its validity may be
questioned in others (Tversky, 1967; Krantz et al., 1971, p. 17). A
more general axiomatization of the AIM which does not require connected-
ness is presented by Tversky (1967). For the purposes of this study,
the axiom is assumed to hold in the latent psychological composition
process.

Since a sequence of elements in a set may contain repetitions of
elements (as opposed to a subset of elements which may not contain repe-
titions), the cancellation axiom actually defines a countably infinite
set of cancellation axioms indexed by n. Each nth-order cancellation
axiom asserts that n inequalities imply an additional inequality via
the AIM provided that identical terms may be canceled from each side of
the inequalities until only one term from each component stimulus set
remains on each side (Krantz et al., 1971, p. 427). Thus, if the nth-
order cancellation axiom fails from some n, than a fortiori the mth-order
cancellation axioms must also fail for all m > n. Similarly, if the
nth-order cancellation axiom holds for some n, then a fortiori the mth-
order cancellation axioms must hold for all m < n.

The ICM algorithm used in this study was based on testing successive
cancellation axioms (i.e., n =1, 2, ...). The algorithm minimized the
redundancy problem by selecting for presentation to the subject only those
composite stimulus pairs which are critical for determining AIM constraints.
All other (redundant) constraints were derived via the AIM from knowledge
of previously obtained ordinal constraints. The algorithm minimized the
random error problem by detecting ordinal inconsistencies in real-time
and attempting to rectify the discrepancies by repeating critically im-
portant pair-comparisons. An extension of the ICM algorithm based on
Tversky's (1967) irreflexivity axiom may be possible for testing multi-
factor polynomial composition models of specified degree.

Constraints Matrix

A central concept in the development of the ICM algorithm is the
notion of a constraints matrix which indicates the preference relation-
ships among composite choice alternatives. A constraints matrix de-
scribes the empirical binary preference relation defined over the Car-
tesian product-set A x P. If the row composite stimulus is preferred to
the column composite stimulus, enter "+" in the matrix. If the column
composite stimulus is preferred to the row composite stimulus, entexr
"=" in the matrix. If no preference is indicated between the two com-
posite stimuli, enter "O" in the matrix. A constraints matrix is skew-
symmetric with zeroes along the main diagonal. Thus, the matrix contains
M = N(N-1) /2 nontrivial terms, where N is the number of elements in the
Cartesian product-set. A total of 3M constraints matrices may exist for
a specified Cartesian product-set. Some of these matrices may be fit
with an additive model, while others may not.
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p In order to illustrate the concept of a constraints matrix, let us
consider the simplest case of a 2 x 2 factorial design. The following
two sets of levels of component factors may be considered:

‘ Assignment = {a, b} = {COMMAND, STAFF}

and

2 ' Place = {p, a} = {EUROPE, CONUS}. :

The corresponding Cartesian product-set is given by
éx _]:_’_ = {(a,P), (arq)r (b,p): (b:q)},

where

(a,p) = ap = COMMAND assignment in EUROPE,

- (a,q) = ag = COMMAND assignmént in CONUS,
‘o (b,p) = bp = STAFF  assignment in EUROPE,
i (b,g) = bg = STAFF assignment in CONUS.

. An example of a constraints matrix which may be fit with an additive
L model is shown in Table 1. The finite system of homogeneous linear equa-
! tions and inequalities determined by this constraints matrix is: ;

a+p-a-gq<QQorp=-9gc<2o0

X a+p-b-p>0ora-b»>0

N a+p-b-gq>0ora-b>qg-p

N a+g-b-p>0ora-b>p-gqg
a+gq-b-g>0ora->b>0
b+p-b-g<0orp-qgq<0.

This system may be solved for component scale values a, b, p, and g
which constitute "ordered-metric" scales (i.e., the resulting scales
have properties better than mere ordinal scales but not so good as in-
terval scales). Note the redundancy of the equations and inequalities
in the system. Only the first three constraints are necessary to com-
pletely describe the system. :

et L SRR
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An example of a constraints matrix which may not be fit with an
additive model is shown in Table 2. The finite system of homogeneous
linear equations and inequalities determined by the constraints matrix

is:
>
o a+p-a-gq<0orp-gqgc«<2©0
4 a+p-b-p<Oora=-Db«<0
4 a+p-b-g<Oora-b<qg-p
i a+g-b-p>0ora-b>p-gqg
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+ b-gq>0o0ora-b>0
b-gc«

a q -
b+p- Oorp-qc«< 0.

Note the inconsistency of the equations and inequalities in the system.
This system may not be solved for component scale values which satisfy

the AIM.

Table 1

Additive Constraints Matrix

ap aq bp bg

ap 0 - + +
aq + 0 + +
\
bp - - o] -
bg ~ - + 0
Table 2

Nonadditive Constraints Matrix

ap ag bp bq

ap 0 - - -
aq + 0 + +
bp + - 0 -
bq + - + 0]

Algorithm Logic

The objectives of the ICM algorithm are twofold: (1) to minimize
the number of comparisons between choice alternatives required to generate
a complete constraints matrix for the AIM; and (2) to rectify discrepan-
cies from the AIM due to random error. A method of accomplishing these
objectives will be presented below.




E’ The ICM algorithm consists of three successive stages. In the first
) stage the first-order cancellation axiom is used to construct a con-
) straints matrix that satisfies the first-order cancellation properties
{ of the AIM. In the second stage the second-order cancellation axiom is
' used to construct a constraints matrix that satisfies the second-order 1
cancellation properties of the AIM as well as the first-order cancella-
tion properties. In the third stage the resulting constraints matrix 1
may be passed to a linear programming subroutine which tests the con-
straints matrix for additivity. 1f a solution exists, the subroutine
_ l may generate scale values for the component factors of the composite choice
, alternatives based on the AIM.

First-order cancellation conditions consist of two forms of single-
component-wise cancellation. The A-component-wise cancellation form is:

If (a,P) A (a,q);

then (b,p) ~ (b,q)

for all a, b in A and for all p, q, in P. The P-component-wise cancella-
i tion form is:

I1f (a,p) ~ (b,p),

(b,q)

oV

then (a,q)

for all a, b, in A and for all p, q in P. Since the antecedent inequality
implies the conclusion inequality, only the antecedent constraint must be
ascertained by querying the subject. The conclusion constraint may be
derived since first-order cancellation is a necessary condition for the
AIM.

Second-order cancellation conditions consist of two forms of double-
component-wise cancellation. 1In the simple transitivity form, the A-
¥ component and P-component of one composite stimulus in each of the two
] antecedents are identical:

eV

If (a,p) (b'q)
 y and (b,q) ’t (c.r), i

‘}‘ then (a,p) 3 (c,r)

for all a, b, ¢, in A and for all p, q, r in P. In the generalized
transitivity form, the A-component and P-component of each composite
stimulus in the antecedents are different:

— e e il —
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If (a,p) 3 (b,q)
and (b,r) g (c,p),

then (a,r) } (c,q)

for all a, b, ¢ in A and for all p, g, r in P, Since the antecedent in-
equalities imply the conclusion inequality, only the antecedent constraints
must be ascertained by querying the subject. The conclusion constraint
may be derived since second-order cancellation is a necessary condition

for the AIM.

In the general case first- and second-order cancellation properties
are necessary but not sufficient for a constraints matrix to satisfy the
AIM since highers-order cancellation properties which are not tested may
fail to hold. However, some recent results by Arbuckle and Larimer (1976)
indicate that the double cancellation requirement becomes stronger as the
size of the factorial design increases. For large factorial designs (e.g.,
5 x5, 6 x 6), the study showed that the chance probability of observing
a constraints matrix which satisfies both first- and second-order cancel- 1
lation is very small. Since the ICM algorithm may be most useful with
large factorial designs, and since the computational requirements in test-
ing third- and fourth-order cancellation were found to require large
amounts of computer time, only the first- and second-order cancellation
tests were implemented in the present version of the algorithm. The test
for sufficiency of the constraints matrix for the AIM may be performed by
a linear programming subroutine.

The antecedent constraints ascertained by querying the subject may
be incorrect when random error is present in an experiment. Any conclu-
sion constraints derived from cancellation conditions based on an incor-
rect antecedent constraint will also be incorrect. The ICM algorithm
must include a mechanism to detect ordinal inconsistencies in the con-
straints matrix and to rectify those discrepancies from the AIM when they
are discovered.

The mechanism for detecting ordinal inconsistencies involves simply
checking the conclusion constraint for each possible set of antecedent
constraints generated on the basis of Scott's (1964) cancellation axiom.
When a particular set of antecedent constraints implies a conclusion con-
straint, the following logic is used:

1. If no conclusion constraint has been entered in the constraints
matrix, the implied constraint is entered and the algorithm
proceeds to test the next set of antecedent constraints.

2. 1f the correct conclusion constraint has been entered in the
constraints matrix, the constraints are consistent and the
algorithm proceeds to test the next set of antedecent
constraints.

—
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3. 1If an incorrect conclusion constraint has been entered in the
constraints matrix, an ordinal inconsistency has been detected.
An error-correction strategy must be adopted to rectify the
discrepancy from the AIM. An ordinal inconsistency detected
in this manner may stem from one of two sources: (1) one or
more of the antecedent constraints may be incorrect; (2) the
conclusion constraint may be incorrect. For the purposes of
this study, a simple error-correction strategy was adopted.
Each antecedent constraint was queried in turn until a con-
straint different from the table entry was obtained. If all
the antecedent constraints were found to correspond to the
table entries, the table value for the conclusion constraint
was changed to the derived value. Since any constraints which
were altered may have been used in previously tested conditions,
it was necessary to restart the cancellation condition testing
process from the beginning each time an ordinal inconsistency
was corrected.

The ICM algorithm logic described above was implemented on a CDC 3300
computer. A listing of the FORTRAN program is provided in the appendix.
Some internal program documentation is provided by means of comment state-
ments. Program MAIN is the driver program which initializes the algorithm
and successively calls up the first- and second-order cancellation test
subroutines CANl and CAN2, respectively. Subprograms ASK, OUTPUT, INDEX,
and XNORM perform a variety of utility functions as indicated by comments
in the listing. Since the linear programming subroutine LPSUB was taken
directly from Davisson (1972), the listing is not included in the appendix.
The results of testing the first- and second-stages of the algorithm pro-
duced discouraging results, so the third-stage of the algorithm repre-
sented by LPSUB was not fully implemented.

ALGORITHM EVALUATION

Error-Free Data

The purpose of testing the ICM algorithm in error-free data was to
determine the degree of success in minimizing the redundancy problem.
In a complete pair-comparison experimental design with N composite stimuli,
M = N(N-1)/2 nontrivial pair-comparisons are made to generate a complete
constraints matrix. The degree of success in minimizing the redundancy
problem may be measured by contrasting the number of queries of the sub-
ject required by the ICM algorithm to generate a complete constraints
matrix in error-free data with the theoretical maximum number M.

A 5 x 5 factorial design was chosen for the test. The 25 composite
stimuli yield a constraints matrix with 25(25-1)/2 = 300 constraints.
The five values of each component stimulus were generated in accordance
with a random-effects model by sampling randomly from independent normal
distributions with means equal to zero and variances equal to unity. The
25 values of composite stimuli were generated in accordance with a




strict additive-independence model by summing appropriate component stimu-
lus scale values. The resulting 5 x 5 matrix of composite stimuli is the
PSI matrix in the ICM algorithm computer program listing. The PSI matrix
generated for the error-free data test is shown in Figure 1.

PSI MATRIX
P " K S T
A 1,3290 eRlal «5348 e 323K «6083
B =0,95655 “le0BLA =1.3597 =1e2707 =1,2862
C 1,9932 1464783 1.1990 « 7881 1.2725
1.0116 049617 2174 00064 «2909
t « 0796 =)e4353 ~Ves7146 =0e9254 =0.6411

i Figure 1. PSI matrix of composite scale values.

, In the first stage of the ICM algorithm, the test of first-order

‘ cancellation required only 20 queries in order to fill in 100 constraints
in the matrix. These 100 constraints are shown as 1 or -1 above the main
diagonal in the CONSTRAINTS matrix in Figure 2. The table value of 9 in-
dicates that a constraint was neither queried nor derived in the first-

- order cancellation stage. The 20 constraints which were queried in the

‘ first-order cancellation stage are shown as 1 in the TIMES matrix in

Figure 3. The table value of 0 indicates that a constraint was not

queried in the first-order cancellation stage.

A A A S A A A ik i i okl
[

In the second stage of the ICM algorithm, the test of second-order 1
cancellation required 149 queries in order to £ill in the remaining 200
: constraints. The complete CONSTRAINTS matrix is shown in Figure 4. The
y 149 queries required by second-order cancellation plus the 20 queries re-
ﬂﬁ quired by first-order cancellation are shown as 1 in the TIMES matrix
in Figure 5. The table value of 0 indicates that a constraint was not
queried in either cancellation stage.

- ~

d .

In total, 169 queries were required by the ICM algorithm to fill in
; all 300 constraints for a reduction of approximately 44%. Although the
J savings were substantial, more than three minutes of CDC 3300 computer
, time were required to compile, load, and execute the program to implement
- the first two stages of the algorithm. If the third stage of the algo-
. rithm (i.e., linear programming for scaling 'solutions) had been implec-
;l mented for this test, the computer time and core memory requirements would
have been much more substantial. Thus, the computational requirements of
1 the ICM algorithm based on a direct application of Scott's (1964) can-
b | cellation condition may be considered rather excessive. A more sophisticated
l
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| CONSTRAINTS MATRIX

TTOTTTRECAYT AR CAST AT BP Be BR B3 BT CP CQU CB CS CT OP 0Q DR DS OV EP EQ ER ES ETY
AP ] 1 1 1 1 1 1 1 1 -1 =i } 1 1 1 1 1 1 1 1 1 1 1 1

i
A =) 0 1 1 1 1 1 1 1 1 =1 =} =l e~} -1 -] 1 1 1 1 1 1 1 1 i

AR =y w] g L -1 I 1 1 1 1 <1 @ =1l <1 -1l =1 1 1 1 1 1 1 1 1 1 ;
AS =1L =1 =1 0 -1 1 )} 1 1 1 e =) =k -} =1 <l =1 1 1 1 1 31 1 1 1

AT =1 =1 1 1 0 1 1 1 1 1 <l =) =l -1 =l =l I 1 1 1 1 1 1 1 1

8P et w1 ~wt wl e1 0 Lt L L 1 1 =) b <] =1 ] o] <] 1 =] <1 -1 1 1 1

80 =1 ~1 =1 =1 =1 =1 0 1 1 1 <] <} =l a} =1 ®} =] =} =] «] el <1 =} =1 =}

BR =1 =1 =1 =i <)l =} =1 0 } =1 <] =} =l <] =1 =l ] =1 <l <] =l =1 =} «1 <}

85 =t =t =t =i =} wf =% =4 0 =} e} =} =) <] =] *) @] o] =] <] <] ol ] =] =l

8T =l =1 =1 =l -k =l =L 1 1 0 el =} =} -] =l el =] el =l =1 sl =1 =1 =l =l

¢ 1 1 1 1 1 ¥ 1 4+ 1 1 9o ¥ 1 1 1 % 1111311110

—e¢- -+ ¥ ¥ 1} t 1 ¥ i 3 I el ¢ 1 1 1 1 1 1 1 1 1 1 1 1 1

; R -1 1 1 1 1 1 1 1 1 1 «f =2 @ 1 = 1 1 1 1 1 1 1 1 1 1 E
' e -l 1 1 11 1 1 11 1 eler sl o0 <lel 1 1 1 1 1 1 1 1 1
—e¥+—=t—-%t k- F t t } 4 1 1 ef e ¥ 1 9 1 @ 1 1 1 1 1 1 1 1

P -1 1 1 1 1 1 1 1 1 1 =1 =L =l 1 =1 ¢ 1 1 1 1 1 1 1 1 1

P8 sl =1 =1 4 <l 1 1 1 1 1 el eh o=l el =1 =l 0 1 1 1 1 1 1 1 1
~9R-=} =} <=} =t «i 1 3} 1 1 1 el =f <l <1 =~} *F =1 g 1 =L 1 1 1 1 1
05 «1 =1 =1 =& =1 1 1 1 1 1 =1 =} =} =] =1 =l =1 =} 0 «1 =1 1 1 1 1
OT =1 =1 =1 =1 =1 1 1 1 1 i =1 =} =1 =1 =1 =1 =1 1 1 o 1 1 1 1 1
> ~t ~F 1 & <1 1 1 1 1 1 el =1 1 =} =} ®1 =1 =} 1 1 0 1 1 1 1
€6 -1 =} =1 -l <1 1 1 3 1 1 <1 =} =l =] =1 el =] <} =1 <1 =} 0 1 1 1
CER =1 <1 =1 <l =l =l 1 1 4 1 =] =) el = <1 el =1 =1 -1 =1 =1 -1 Qo 1 =l
—€8 = =1 =1 =i =1 =1 1 1 1 1 e} =i =l e} *] %) =] =] =] =] =] -] -] g =l
ET <1 =1 =1 <l =) =i 1 1 1 1 =] =} =l «] =1 =1 =i =] =1 «1 =1 =1 1 1 0

Flgure L. CONSTRAINTS matrix after second-order cancellation
in error-free data. ]
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mathematical approach seems required to provide a more efficient solution
to the redundancy problem. The principal disadvantage of the present ap-
proach seems to be the inherent rigidity in constructing the second-order
cancellation tests based on specific sequences for testing all a, b, c,
in A and all p, g, r in P. 1In order to further reduce the number of
queries required in the second-order cancellation stage of the algorithm,
it seems necessary to abandon this rigid procedure in favor of an adap-
tive procedure based on the nature of all the known constraints. Just
how to accomplish this goal in the present context of Scott's (1964)
cancellation condition is not clear. Perhaps an adaptation of the gen-
eral algorithm of McClelland and Coombs (1975) may be feasible for this
purpose of interactive conjoint measurement.

Data With Random Error

The purpose of testing the ICM algorithm in data with random error
was to determine the degree of success in minimizing the problem of ran-
dom error. This degree of success may be assessed in terms of (1) the
number of additional queries required by the ICM algorithm to resolve
detected discrepancies from the AIM, dnd (2) the extent to which the
estimated constraints matrix corresponds to the true constraints matrix
(i.e., the extent to which the obtained measurement structure approxi-
mates the true latent measurement structure).

The 5 x 5 PSI matrix of composite choice alternative scale values
generated for the test of the ICM algorithm in error-free data was also
used for the test of the algorithm in data with random error. Whenever
the algorithm queried the simulated "subject," the true absolute differ-
ence in composite choice alternative scale values was perturbed by add-
ing an error component prior to ascertaining the preference relation.
The error components were sampled independently from a normal distribu-
tion with mean equal to zero and variance equal to oé. The error vari-
ance was set at a moderate value of .25.

The results of this test showed that a total of 200 queries were
required to generate a comn»lete constraints matrix which satisfied both
first- and second-order cancellation conditions. Thus, the 44% reduction
obtained in error-free data was decreased to 33% reduction in data with
a moderate amount of random error. The number of queries made for each
pair of composite choice alternatives is shown in the TIMES matrix in
Figure 6. Note that comparisons (a,r) versus (a,s) and (a,g) versus (a,t)
were made nin: times and eight times, respectively. The large numbers
of queries required for these comparisons may be attributed to the small
absolute differences in scale values (approximately .21) which make these
comparisons especially sensitive to random error (standard deviation .50).
The fact that the algorithm made repeated queries of these comparisons
rather than queries of equivalent comparisons [e.g., (b,r) versus (b,s);
(b,q) versus (b,t)] indicates another deficien:y of this algorithm which
is due to the inherent rigidity of constructing cancellation conditions
based on specific sequences of elements in the component stimulus sets.
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TIMES MATRIX
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AS 0 0 o0 0 1 0 © ¢ © © ¢ © ¢ o 0o I 1 0o 0 W Y U ¢ O w
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The estimated CONSTRAINTS matrix obtained in this test is shown
in Figure 7. Note that this constraints matrix corresponds to the true
constraints matrix shown in Figure 4 with the exception of three con-
straints: (a,r) versus (d,q), (b,p) versus (e,q), and (c,r) versus
(d,p). Since perfect correspondence was not obtained, these results
imply a need to test higher-order cancellation conditions prior to
passing the constraints matrix to the linear programming third stage
of the algorithm. More than six minutes of CDC 3300 computer time were
required to compile, load, and execute the program for this test with
random error. Again, the computational requirements of the ICM algo-
rithm based on a direct application of Scott's (1964) cancellation con-
dition seem excessive. A more computationally efficient algorithm seems
required to serve as a basis for computerized adaptive model testing.

CONCLUSIONS

This study investigated an application of recent results in con-
joint measurement theory research with the aim of developing a new
methodology for (1) modeling a decision process used to evaluate pref-
erences for complex choice alternatives and (2) producing measurement
scales for choice component factors and composite choice alternatives
based on the decision mcdel. An algorithm for interactive conjoint
measurement (ICM) was developed to minimize the problems of redundancy
and random error in testing the additive-independence model (AIM) in
pair-comparisons designs with fallible data. No provisions were made
for handling the systematic error problem or for accommodating more than
two choice component factors.

The results showed that a reduction of approximately 44% in the
number of pair-comparisons necessary to determine all model constraints
was possible in a 5 x 5 factorial design with error-free data. This re-
duction was decreased to 33% when a moderate amount of random error was
introduced. Although only first- and second-order cancellation condi-
tions were built into the algorithm for this test, the test in error-free
data required more than three minutes of computer time and the test in
data with a moderate amount of random error required more than 6 minutes
of computer time. The main conclusion from the study was that the ICM
algorithm based on a direct application of Scott's (1964) cancellation
axiom performs rather poorly, and that a more computationally efficient
algorithm seems required to serve as a basis for computerized adaptive
model testing.
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CONSTRAINTS MATRIX
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APPENDIX
¥ MSFORTRAN  (4,3) / MSUS 5.l 07/25/79 PAGE 001

. PROGRAM MAIN
' DIMENSION ROWA(5) sCOLP (D) s ITER(2)
INTEGER CONMAT, TIMESySUMIT
INTEGER AasP+FLAG
CHARACTER AAsPPAST
COMMON /DATA/ NASNAML sNAMZ NAM3 ,NAM&G sNPsNPM] ,NPM2 {NPM3 o NPM4 s
1A(S) 4P (5) sFLAG4AA(S) sPP (5) ¢AST4PSI(595) sCONMAT (625) » TIMES (625) +SE

‘ 2+ 1IX
i c
o INITIALLZATIONS
c
AA(l) = 218
AA(2) = 22B
AA(3) = 23B
AA(4) = 24B
AA(S) = 25B
PP(1) = 478
! PP(2) = 508
‘ PP(3) = 518
3 PP(4) = 628
- PP(5). = 638
= | AST = 543
; IX = 4321567
: SA = 1,
| SP = 1.
? SE = 0,
- NA = 5
' NP = 5
NAM] = NA - )
NAMZ = NA = 2
NAM3 = NA = 3
NAMG = NA = &4
NPM] = N9 « |
NPMZ = N2 = 2
NPM3 = N2 = 3
NPM4 = NI = 4
MAXIT = 15¢
SUMIT = ¢
FLAG 2 v
: Do 10l I=le2
i3 ITER(L) = ¢

161  CONTINUE
 { I = (Na#\P) e,
f; 00 102 J=lol
8 CONMAT(J) = 9
vt TIMES(J) = @
o 102  CONTINUE
;j 00 103 I=1eNA
DO 1nd J=leNP
= IND = INJEX(IeJdeled)
e CONMAT(IND) =
: 103  CONTINUE
DO 104 I=z14NA

' ROWA (1) = XNORM(IXy0e9SA)
104 CONTINUE
DO 105 J=1oNP 21
|
}
f
i
LT A
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MSFORTRAN (4,3) /7 MSUS 5.1 07/,25/79 PAGE 002

105

301
401

501

L e RSV TNP LT P A

COLP(J) = XNORM(IX90e9SP)
CONTINUE

Do 106 l’l.NA

DO 106 Js)¢NP

PSI(I9J) = ROWA(I) ¢ COLP(J)
CONTINUE

TEST CANCELLATION AXIOMS

CALL CaN)

IF (FLAG NEs 0) GO TO 401

CALL OUTPUT (NAsNPoSUMITHITERIPSICONMAT ,TIMES,AA4PP)
CALL CAN2 )

IF (FLAG «NE. 0) GO TO 401

CALL OUTPUT (NANPySUMIToITERePSIoCONMAT 4 TIMES ,AA4PP)
GO TO 501

SUMIT 3 SUMIT « ]

ITER(FLAG) s ITER(FLAG) ¢ ]

IF (SUMIT ,GT. MAXIT) GO T0O: 301

FLAG = ¢

G0 10 201

CONTINUE

STOP

END
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SUBROUTINE CAN1

INTEGER CONMAT,TIMES

INTEGER 819A29A39A4sP19P29P 3Py

INTEGER asPoFLAG

CHARACTER AA.PP#AST

COMMON /DATA/ NA!NA"}9NAH2,NA"3.NANQ’NPONP"IoNPNZ.anaoNPNQO‘
1A(5) 4P (5) sFLAGIAA(5) sPP (5) yAST4PSI(595) s CONMAT (625) 9 TIMES (625)9SE
2e1IX

EQUIVALENCE (A(1)oIA) 9 (A(2)9JA) 4 (AL3) 9sKA)

EQUIVALENCE (P(1)sIP) s (P(2)9JP) 4 (P(3)+KP)

C
C CAN1 TESTS FIRST OROER CANCELLATION
C
IF (NA (LT. 2 ,OR, NP LLT. 2) GO TO 9999
C
(o IN FIRST ORDER CANCELLATION, THE SEQUENCE LOGIC IN SCOTT#£S THEOREM
C MAY BE REPLACED BY SUBSET LOSIC wITH NO LOSS OF GENERALITY AND WITH
C SUBSTANTIAL SAVINGS IN COMPUTER TIME.
C
C TEST EACH SUBSET OF 2 ELEMENTS IN A
c
IA =0
1 1A = 142 + 1
IF (IA LEQ, NA) GV TO 9999
JA = la
2 JA = Ja e |
IF (JUA o537 Na) 60 TO )
n IF (1A +EQ. JA) GO TO 2
c .
C TEST £aCH SUBSET OF 2 ELEMENTS InN P
C
IPp = 0
3 Ip = 1P o 1
1F (IP .EQ, NP) GO TO ¢
JP = 1p
'Y NT-IE TN - |
IF (JP «53T. NP) GO TO 3
IF (1P +EQ, JP) GO 70 & h
C
C TEST EaC~ PERMUTATION OF ELEMENTS IN SUBSET OF A
c
00 102 I=1,2
DO 10l Jsl,2
IF (1 +EQs J) GO TO 1ol
c )
(o TEST EACH (NONTRIVIAL) PERMUTATION OF ELEMENTS IN SUBSET OF P
o .
11 =J
Jd = |
(o
C TEST FIRST ORDER CANCELLATION
c
Al = 1A
A2 = ACD)
Al = A(J)
AL = JA 23
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P1 = 1P :
P2 = P(I) !
P3 = P(JJ) i
P = JP ]
IND1 = INDEX(AlsPloA24P2)
I0R1 = CONMAT (INV))
IF (IOR]l +EW. 9)
1 CALL ASK (IORl+AlsPLeA2sP2)
IND2 = INDEX(A3sP3IsALoPS)
IOR2 = CONMAT (INLZ)
IF (IOR2 .NEes 9) GO TO S1
CONMAT (IND2) = IOR]
IND = INDEX(A4P43A39P3)
CONMAT (IND) = =10R]
G0 T0 101
Sl IF (IOR2 .EQ. IOK1l) 60 TO 101
FLAG = |}
WRITE (61+1001) AACAL) oPP(P1)9ASTAA(A2) PP (P2)
1 AA(A3) oPP(P3) sASTyAA(AL) (PP (P4) {
1001 FORMAT (/7/7(1Xe2Als1X9A)91X92Al))
WRITE (61+1002) LOR1s]JOR2
1002 FORMAT (/1X9215)
CALL ASK (IOReAl9P19A2,P2)
IF (I0R  NEe IORL) GO TO 9999
CONMAT (IND2) = I0K]1
IND = INDEX(A4sP49A39P3)
CONMAT(IND) = =]UR)
60 TO 9999
101 CONTINUE
102 CONTINUE
Go 70 o
9999 RETURN
END
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,! SUBROUTINE CAN2 b ]
b INTEGER CONMAT,TIMES

; INTEGER A)9A2+A39A49A59A69P)2P2,P39P44P5,P6

’ INTEGER AysPsFLAG P

CHARACTER AA4PPsAST ‘

COMMON /DATA/ NASNAML 9NAM2 sNAM3 ,NAMG NP sNPM] o NPM2  NPM3 o NPM4 o ‘
1A(S) 9P (5) sFLAGAA (5) sPP (5) ¢ASTsPSI (595) »CONMAT (625) » TIMES (625) ¢ SE
2s1IX

EQUIVALENCE (A1) 9IA) 9 (A(2) 9JA) 4 (A(3) 9KA)
l EQUIVALENCE (P(1)9IP) s (P(2)9JP), (P(3)¢4KP)

(od
C CAN2 TESTS SECONU ORDER CANCELLATION
C
IF (NA LT. 3 JO0R, NP LLTs 3) GO TO 9999
c
c TEST EACH (NONREPEATING) SEQUENCE OF 3 ELEMENTS IN A
C
IAn = 0
1 1A = 1a ¢ 1
IF (1A 5T, NA) GO YO 9999
JA = 0
2 JA = Ja + ]
IF (JA +GTe NA) GO TO |}
: IF (IA +EQe JA) GO TO ¢
o KA = 0
! 3 KA = Ka ¢ }
{ IF (KA «GTs NA) GO TO 2 :
] i IF (IA +EQe KA +OR, JA oEG, KA) GO TO 3
: C
) c TEST EaCH (NONREPEATING) SEQUENCE OF 3 ELEMENTS IN P
c
iIp =0
[y IPp = 1P ¢ )
IF (IP +3T. NP) GU 70 3
JP = 0
5 JP = JP ¢ |
IF (JP .GTO NP) 60 TO 4
IF (IP .EQ, UP) 6O TO 5
KP = ¢
6 KP = KP + )
2 IF (KPP «GTe NP) GO TO o
s IF (IP +EQ, KP oUK, JP +E@. KP) GO TO 6
: c
) Cc TEST EACH PERMUTATION OF ELEMENTS IN SEQUENCE OF A
i o
] 00 106 Ix1,3
! D0 105 Jxl,3
{ IF (1 EQe. J) 6V TO 105
y, 00 104 K=143 ’
1 IF (I +EQe K «ORe J oEWe K) 30 TO 104
5 ¢
(o TEST EACH (NONTRIVIAL) PERMUTATION OF ELEMENTS IN SEQUENCE OF P
C

DO 103 II=1.3
IF (I «E% 1 «ANU. 11 «EQ. 1) GO TO 103

'] DO 102 JJ=1+3
3 25
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(Il +£Q, JJ) G0 TO 102
(J ¢EQ¢ 2 o¢ANDe JJ +EQ. 2) GO T0 102

101 KxX=z143
(11 «EQ, KK +OR, JJ «EQ, ‘K) GO T0 101

IF (K JEQe 3 <+AND. KK +EQ¢ 3) GO TO 101
. IF (K oEQe¢ 1 sANUe KK +EQe 1 oANDe I <EQ@, 3 ,AND. 1I LEQ. 3)
‘ 1 60 TO 101
: IF (K JEQe 2 oANDs KK oEQe 2 ¢ANDe J oEQ@, 3 ,ANDe JJ (EQs I)
\ 1 60 T0 101
" c
c TEST SECOND ORDER CANCELLATION
C
Al = Ia
A2 = A(])
Al = JA
Ay = A(Y)
AS = A(K)
A6 = KA
P 2 IpP
P2 = P(II)
i P3 = JP
, Pe = P(JD)
‘ Ps = P(KK)
Pe = KP
: IND1 = INDEX(Aa1sP)eA24P2)
‘ I0R1 = CONMAT(IND])
IF (IOR] +EQ. 9)
1 CALL ASK (IOR19A19P)9A24P2)
IND2 = INDEX(A3sP39A4P4)
I0R2 = CONMAT (INLZ2)
IF (I0R2 +EQe 9)
1 CALL ASK (IORZ2+A3+P39A44Ps)
IF (I0R2 «NE. IOR1) GO TO 101
IND3 = INDEX(ASePS4A64P6)
IOR3 = CONMAT(INL3)
IF (IOR3 «NE. 9) GO TO 51
CONMAT (IND3) = IORR2
IND = INDEX(A64PO9ASIPS)
CONMAT (IND) = =IUR?
GO T0 101 -
S1 IF (IOR3 +EQ, IOR2) GO TO 101
FLAG = 2
WRITE (6191001) AA(AL)oPP(P1) 9ASToAA(A2) 4PP(P2)
1 AA(A3) 9PP(P3) sASToAA(A4) 4PP(P4)
2 AALAS) sPP (PS) 9 AST9yAALAG) 4PP (Pg)
1001 FORMAT (//(1Xe2Al91X0Al0]lXe2A1))
WRITE (6101002) 10R19]JOR2,IO0R3
1002 FORMAT (/1X%9315)

wgilon

CALL ASK (IORsAl9P19A29P2)

IF (IOR (NEe« I0R1) GO TU 9999
CALL ASK (IOReA39P3I0A4Ps)

IF (IOR ,NE. IOR¢Z) GO TU 9999
CONMAT (INvL3) = LUR2

IND = INDEX(A64POJASHPS)
CONMAT (1vD) = =10R2

GO TO 9999 26
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101  CONTINUE
J 102 CONTINUE
. 103 CONTINUE
104  CONTINUE

105  CONTINUE
' 106  CONTINUE
60 T0 6
9999 RETURN
END
i
:
3
.
X
»
i .
3
\

27
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SUBROUTINE ASK (lORsIsJeKeL)

INTEGER AsPsFLAG

INTEGER CONMAT,TIMES

CHARACTER AAPPAST

COMMON /DATA/ NAYNAML s NAM2 s NAM3 ,NAM& o NP s NPM) o NPM2 s NPM3 o NP M4 9
1A(5) 4P (5) oFLAGAA (5) sPP (5) yAST4PSI(5+5) »CCNMAT (625) » TIMES (625) ¢ SE

2+IX

ASK QUERIES THE SUBJECT CONCERNING THE PREFERENCE RELATION
FOR STIMULUS (IsJ) RELATIVE TO SIMULUS (KsL),

PREF = PSI(IlsJ) = PSI(KyL)
PREF = PREF * XNORM{IX90.0,SE)
IF (PREF) 19243

IOR = =1

GO TO 4

IOR = O

GO T0 4

IoR = 1

CONTINUE

IND = INDEX(IeJsKolL)

CONMAT (IND) = I0R
TIMES(IND) = TIMES(IND) + )
IND = INDEX(KsLolsJ)

CONMAT ({INU) = =]JUR

RETURN

END

28
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SUBROUTINE OQUTPUT (NAJNPsSUMIT,ITERPSIeCONMAT,TIMESsAAPP)

DIMENSION ITER(2)9sPSI(5+5)
INTEGER SUMIToCONMAT (625) s TIYES (625) s TEMP (Sy5)
CHARACTER AA(S) +PP(S)

C OUTPUT [TERATIONS

WRITE (61,1001) SUMIT, (ITER(I)4I=142)
1001 FORMAT (1H1//11H ITERATIONS

1 776 SUMIT.2Xe13
2 7760 LTERL2Xe13
3 776H LTERZ242X013)

C

C OUTPUT CONSTRAINTS MATRIX

o

WRITE (6191002) ((AA(D)sPP(J)eU=19NP) 9 I=14NA)
1002 FORMAT (1H1//19H CONSTRAINTS MATRIX//6X925(2A]+2X))

DO 101 I=14NaA

DO 1pl J=1eNP

DO 1 K=14NA

00 1 L=14NP

IND = INDEX(IeJeKel)

TEMP (KoL) = CONMAT (IND)
1 s CONTINUE

WRITE (61+1003) AA(L) 4PP(J) g ((TEMP (KoL) sL=1sNP) sK=l9NA)
1003 FORMAT  (/2X42A192X9e25(1292X))
101 EONTINUE
c
Cc OuTPYT TIMES MATKRIX

(o
WRITE (61+1004) ((AA(L)sPP(J) o Jm]yNP)sI=]1¢NA)
1004 FORMAT (1H1//13H TIMES MATRIX//pX,25(2A1,2X))
DO 102 I=1eNA
DO 102 J=1 NP
DO 2 K=z=]l4NA
00 2 L=]l,yNP
IND = INDEX{(IeJeKolL)
TEMP(KeL) = TIMES(IND)
? CONTINUE -
WRITE (61+1003) AA{L) 4PPIJ) o LITEMP (KoL) sL=19NP) s K=14NA)
102 CONTINUE
o
o OUTPUT PSI MATRIX
C
WRITE (6191005) (PP(J)sJ=lyNP)
1005 FORMAT (1H1//11H PSI MATRIX//6X5(5XsAlr4X))
DO 103 [=14NA
WRITE (61+1006) AA(I) s (PS1(JsJ),u=19NP)
1004 FORMAT (/3X9Ale2XeSF1l0e%)
103 CONTINUE
RFTURN
END

29
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FUNCTION INDEX(lsJyKel)
! ) COMMON /DATA/ MslOUM(4) 9N

INDEX COMPUTES THE LOCATION OF ELEMENT (IsJekoL) IN A LINEAR
FOUR=UIMENSIONAL ARRAY OF SIZE (MeNyMeN),

OOO0O

INDEX = 1 + (J=l)#M ¢ (Kel)oMEN o (L=])®*MON&M
RETURN
END
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OO0

101

FUNCTION XNORM(IXyXM9XS)

XNORM COMPUTES A NORMALLY DISTRIBUTED RANDOM vARIABLE WwITwH
MEAN XM AND STANUARD OEVIATION xS,

XNORM = 0,

DO 101 1=1,12

Iy = Ix # 4093

IF (1Y) 14292

Iy = Iy « 8388607 + 1
YFL = 1Y .
YFL = YFL & 0,1192093E-V

Ix = Iy . .

XNORM = XNORM + YFL

CONTINUE

XNORM = (XNORM = 6,) ® XS + XM
RETURN

END

e
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